SYNTHESIS OF (+)-DISPARLURE

USING THE REACTION OF 6-METHYLHEPTYL PHENYL SULPHONE WITH TRIMETHYLSILYL ETHYLENE OXIDE AND ASYMMETRIC EPOXIDATION

Stanis Jaw Marczak, Marek Masnyk and Jerzy Wicha*

Institute of Organic Chemistry of the Polish Academy of Sciences, Kasprzaka 44, 01-224 Warsaw, Poland

Summary: Lithiated sulphone 2 was reacted with trimethyl(oxiranyl)silane 3 to yield allylic alcohol 4; the latter was epoxidized by the Sharpless procedure and the corresponding hydroxy-epoxide 5b was transformed into (+)-disparlure 6 via tosylate 5c.

Disparlure (<u>6</u>, Scheme 1), an attractant of gypsy moth, is one of the most popular targets of the contemporary synthetic studies in the field of pheromones.¹ Optically active compound <u>6</u>, in both enantiomeric forms, has been prepared^{2,3} using as intermediates (<u>2</u>)-allylic alcohols corresponding to the C_1-C_9 or C_6-C_{18} fragments of its carbon skeleton and applying Sharpless asymmetric epoxidation.⁴ In this context the availability of primary (<u>2</u>)-allylic alcohols is of utter importance for the efficiency of the synthetic route to the compound under consideration and to some other natural products. We have recently found⁵ that (<u>2</u>)-allylic alcohols may be prepared with high selectivity by the reaction of alkyl aryl sulphones with trimethyl(α, β -epoxyalkyl)silanes. Now, we report an efficient synthesis of natural (+)-disparlure, involving the

reaction of sulphone 2 with trimethylsilyl ethylene oxide 3 to give primary allylic alcohol 4, as well as transformation of the latter into enantiomerically pure hydroxy-epoxide 5b.

Sulphone 2 was obtained by radical addition of thiophenol to 6-methyl-

-hept-1-ene⁶ (<u>1</u>), followed by oxidation (Scheme 1). Epoxide <u>3</u> was obtained from trimethylvinylsilane via bromhydrin. 7 The reaction of compound 2 (lithium derivative) and 3, followed by acid hydrolysis, ⁵ gave allylic alcohol 4 in a 65% vield. E:Z = 1:13. This product was submitted to Sharpless epoxidation, and the crude hydroxy-epoxide was esterfied with 3,5-dinitrobenzoyl chloride.² Single crystallization of the obtained mixture (hexane-ether) furnished pure ester 5a (45% yield from 4). The latter ester was hydrolyzed and the alcohol $5b^9$ was converted into tosylate <u>5c</u>. This derivative was treated with n-nonyllithiumcuprate according to the procedure of Mori and Ebata.² The required product 6 displaying the expected physical properties, was obtained.

Acknowledgement

We thank Dr. W. Kroszczyński, Institute of Pharmaceutical Industry, Warsow , for HPLC analyses. Financial support from the Polish Academy of Sciences (Grant CPBP 01.13.2.23) is gratefully acknowledged.

REFERENCES AND NOTES

- 1. Systematic name of (+)-1: (7R,8S)-epoxy-2-methyloctadecane ; for leading references on the synthesis, see: D.Bianchi, W.Carbi, P.Cesti, F.Francaluci, F.Rama, Tetrahedron Lett., 1988, <u>29</u>, 2455; T.Satoh, T.Oohara, Y.Ueda, K.Yamakawa, ibid, 1988, <u>29</u>, 313; I.Ujvary, E.Voigt, K.Lesko, Acta Chim. Hung., 1988, <u>125</u>, 131; S.Pikul, M.Kozłowska, J.Jurczak, Tetrahedron Lett., 1987, <u>28</u>, 2627 and references cited therein. K.Mori, T.Ebata, Tetrahedron, 1986, <u>42</u>, 3472; idem, Tetrahedron Lett., 1981, <u>22</u>, 4281
- 2.
- 3. B.E.Rossiter, T.Katsuki, K.B.Sharpless, J.Am.Chem.Soc., 1981, 103,464
- 4.
- T.Katsuki, K.B.Sharpless, ibid, 1980, <u>102</u>, 5974 M.Masnyk, J.Wicha, Tetrahedron Lett., 1988, <u>29</u>, 2497 5.
- This compound was prepared by coupling of i-amylmagnesium bromide and 6. allyl chloride
- 7. P.Jankowski, M.Masnyk, J.Wicha, Synth. Comm., in the press
- 8. Distilled product
- Enantiomeric purity of this product was confirmed by ¹H NMR spectra of its ester with (R)-3,3,3-trifluoro-2-methoxy-2-phenylpropionic acid 9. [(R)-MTPA] (J.A.Dale, H.S.Mosher, J.Am.Chem.Soc., 1973, 95, 512)

Selected physical and spectroscopic properties of the products:

Sulphone 2, bp 138°C/0.05 mmHg, correct elemental analysis; 3,5-Dinitrobenzoate 5a, mp 80°C, [α] =-11.03 (c=1.35, Et_0); ¹H HMR (CDC1, Bruker Am 500): ⁵ (ppm) 0.88(d,6H, J=6,6Hz, 2CH₃), 1.18-1,24(m,2H),1.35-1.66(m,7H), 3.13(ddd, 1H, J₁=J₂=6.2, J₃=4.4 Hz, C₃-H), 3.37 (ddd, 1H, J₁= 4.2, J₂=4.2, J₃=7.6Hz, C₂-H), 4.41(dd, 1H, J₁=3.7, J₂=12.1Hz) and 4.73(dd, J₁=7.6, J₂=12Hz, 2C₁-H), 9.21(d, J=2.1Hz) and 9.25 (t,J=2.1Hz, aromat.H) (R)-MTPA-estef 5d, H NMR, diagnostic signals: ⁶ (ppm) 4.35 (dd, 1H, J₁=6.8, J₂=12.0Hz, C₁-H) and 4.51 (dd, 1H, J₁=4.6, J₂=12.0Hz, C₁-H) Alcohol 5b, H NMR ⁶ (ppm)).865(d,6H, J=6.6Hz, 2CH₃), 1.14-1:19(m,2H,CH₂), 1.25-1.40(m,4H,CH₂), 1.52(9 lines, J=6.6, C₆-H), 2.06(dt,2H,J₁=J₂=ca.7Hz C₄-H), 4.19(d,2H, J=6.3Hz, C₁-H, 5.52(dt, 1H, J₁=7,J₂=10.9Hz, C₃-H), 5.62(dt, 1H, J₁=6.3, J₂=10.9Hz, c₂-H) (+)-Disparlure (6), H NMR ⁶ (ppm) .

(Received in UK 6 January 1989)